منابع مشابه
Carbon nanotube electronics and photonics
© 2009 American Institute of Physics, S-0031-9228-0901-020-5 Since the demonstration of the first transistors in 1947, computing electronics has been based mostly on one material, silicon. The emergence of MOSFETs in the 1960s and the development of microlithography and other fabrication techniques have allowed the continuous miniaturization of silicon devices. The resulting increases in densit...
متن کاملTunable graphene based optics, electronics and photonics
Graphene, which consists of a single atom-thick plane of carbon atoms arranged in a honeycomb lattice, exhibits unique both " bulk " and " surface " properties of materials due to its tunable electronic structure. In this talk, I would like to present the tunable platform of graphene-based materials including graphene and graphene oxide in optical, electronic and photonic applications by manipu...
متن کاملMultifunctional materials for electronics and photonics
The bottom–up approach is considered a potential alternative for low cost manufacturing of nanostructured materials [1]. It is based on the concept of self–assembly of nanostructures on a substrate, and is emerging as an alternative paradigm for traditional top down fabrication used in the semiconductor industry. We demonstrate various strategies to control nanostructure assembly (both organic ...
متن کاملPlasmonics: merging photonics and electronics at nanoscale dimensions.
Electronic circuits provide us with the ability to control the transport and storage of electrons. However, the performance of electronic circuits is now becoming rather limited when digital information needs to be sent from one point to another. Photonics offers an effective solution to this problem by implementing optical communication systems based on optical fibers and photonic circuits. Un...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature
سال: 2018
ISSN: 0028-0836,1476-4687
DOI: 10.1038/d41586-018-04443-3